Experion Series C input/output chassis-less mounted modules and field level network gateways provide the physical connection between an automation system and the process when used with the C300 Controller. Input/Output Modules and field terminations are combined in the same area. The Input/Output Modules are plugged into Input /Output Termination Assemblies to eliminate the need for a separate chassis to hold the electronics assemblies.

C300 Controller

The C300 Controller is constructed using the Series C form factor that employs an Input Output Termination Assembly (IOTA) and an electronics module which mounts and connects to the IOTA. One C300 Controller contains all of the control functionality and the communications functions with plug-in modules.

The C300 Controller may operate in both non-redundant and redundant configurations. Redundant operation requires a second identical controller and connecting cables, which is the typical configuration. The C300 Controller is connected to the associated I/O hardware by a pair of I/O Link Interface cables

The table below identifies the C300 Controller components and its associated components. TheC300 Controller supports non-redundant and fully redundant operation. Redundancy is built in to the controller, so that just adding another controller and a redundancy cable; a redundant controller pair is achieved. Note that the 'CC' designation on the model number indicates the printed wiring boards are conformally coated for additional protection from the environment, (CU = uncoated).

Components	Description	Model No.
C300 Controller Module	A distributed process controller and I/O gateway for the Experion system. Module contains printed circuit assemblies, status indicators and a display, inside in a plastic housing. Module mounts to its Input Output Termination Assembly (IOTA).	CC-PCNT01 CU-PCNT01
	Supply Rating: 0.311A @ 24VDC	
C300 Controller Input Output Termination Assembly (IOTA)	Provides the connection point for theC300 Controller module and all cable terminations to the controller, (FTE, IO Link, Redundancy, Battery and Time Source cable terminations). Provides 24Vdc power distribution to the controller module.	CC-TCNT01 CU-TCNT01
	Supply Rating: 0.311A @ 24VDC Note: The C300 Controller IOTA supports only one controller module.	
9 Port FTE Control Firewall Module	Provides FTE distribution to in-cabinet network nodes. (C300 Controllers and Series C Modules) Supply Rating: 0.112A @ 24VDC	CC-PCF901 CU-PCF901
9 Port Control Firewall IOTA	Provides connection for eight FTE cables from in-cabinet controllers and Series CFIMs. The 9 th port provides an uplink to the FTE supervisory network. Provides 24Vdc power distribution to the control.	CC-TCF901 CU-TCF901
	Ethernet: 9 RJ-45 Connections Fiber-Optic: Model Ca-FSMx01 FTE Single Mode Fiber Module Supply Rating: 0.30mA@24VDC Model Ca-FMMx01 FTE Multi-Mode Fiber Module Supply Rating: 0.30mA@24VDC	

The Series C modules comprise:

- Input Output Termination Assembly (IOTA): An assembly that holds the IOM and the connections for field wiring,
- Input Output Module (IOM): A device that contains most of the electronics required to perform a specific I/O function. The IOM plugs onto the IOTA.

The Experion Series C I/O consists of the following I/O modules (IOM's):

High Level Analog Input /HART Input Module (16pt):

A High Level Analog Input Module supports both high level analog and HART inputs. Analog inputs are typically 4-20mA DC for both traditional and HART devices. HART data can be used for status and configuration. HART data, such as the secondary and tertiary variables, can also be used as process control variables.

Supply Rating: 0.195A @ 24VDC Input Voltage: 24Vdc

Manufacturer's Declared Parameters			
Input / Output Model	CC-PAIH01 - High-Level Analog Input with HART CU-PAIH01 - High-Level Analog Input with HART		
IOTA Models	CC-TAIX01 CU-TAIX01	Non Redundant	6"
	CC-TAIX11 CU-TAIX11	Redundant	12"
Input Type	Voltage, current (2	2-wire or self-powere	ed transmitters)
Input Channels ⁽¹⁾	16 Channels (12 S	Single Ended / 4 Diff	erential)
Common Mode Rejection Ratio, dc to 60 Hz (500 Ω source imbalance)	70 dB		
Common Mode Voltage, dc to 60 Hz	-6 to +5 V peak		
A/D Converter Resolution	16 bits		
Input Range ⁽¹⁾	0 to 5 V, 1 to 5 V, 0.4 to 2 V, 4-20 mA (through 250 Ω)		
Normal Mode Rejection Ratio, at 60 Hz	19 dB		
Normal Mode Filter Response	Single-pole RC, -3 dB @ 6.5 Hz		
Maximum Normal Mode Input (differential inputs, no damage)	± 30 Volts		
Crosstalk, dc to 60 Hz (channel-to-channel)	-60 dB		
Input Impedance (voltage inputs)	> 10 M Ω powered	1	
Maximum Input Voltage (any input referenced to common, no damage)	± 30 Volts		
Input Scan Rate	50 ms		
Hardware Accuracy (@ CMV = 0 V)	± 0.075% of full-so (0 to 60°C)	cale (23.5°± 2°C) ± 0	0.15% of full-scale
Transmitter Field Power Conditioning		ted Current Limiting dive interfacing. No	

1) Each channel's 250-Ohm load resistor is connected to the input terminal through a wire jumper on the IOTA. This jumper should be cut by the user on channels to be used with voltage transmitters. For channels 13-16 the low-side input connection is normally connected to system common by a wire jumper on the IOTA. This jumper may be cut by the user to enable differential operation subject to operating within the CMV specification.

Analog Output/HART Output Module (16pt): The Analog Output Module supports both standard 4-20mA DC outputs and HART transmitter outputs. Supply Rating: 0.46A @ 24VDC

Manufacturer's Declared Parameters				
Input / Output Model	CC-PAOH01 - Hig	CC-PAOH01 - High-Level Analog Output with HART		
	CU-PAOH01 - High-Level Analog Output with HA		put with HART	
IOTA Models	CC-TAOX01	Non Redundant	6"	
	CU-TAOX01			
	CC-TAOX11	Redundant	12"	
	CU-TAOX11			
Output Type	4-20 mA			
Output Channels	16			
Output Ripple	< 100 mV peak-to 250 Ω load	< 100 mV peak-to-peak at power line frequency, across 250 Ω load		
Output Temperature Drift	0.005% of Full Sc	0.005% of Full Scale/°C		
Output Readback Accuracy	±4% of Full Scale	±4% of Full Scale		
Output Current Linearity	± 0.05% of Full Sc	± 0.05% of Full Scale nominal		
Resolution	± 0.05% of Full Scale			
Calibrated Accuracy	$\pm 0.35\%$ of Full Scale (25°C) including linearity			
Directly Settable Output Current Range	0 mA, 2.9 mA to 2	21.1 mA		
Maximum Resistive Load	800 ohms			
(24 V supply = 22 VDC through 28 VDC)				
Maximum Output Compliant Voltage	16 V			
(24 V supply = 22 VDC through 28 VDC)				
Maximum Open Circuit Voltage	22 V			
Response Time	settles to within 19	% of final value withi	n 80 ms	
(DAC input code to output)				
Gap (0 mA) of Output to Field on Switchover	10 ms maximum (applies to Redundar	ncy only)	

Digital Input 24 VDC (32pt):

Digital input sensing for 24V signals

Supply Rating: 0.130A @ 24VDC

Manufacturer's Declared Parameters			
Input / Output Model	CC-PDIL01 - 24Volt Digital Input CU-PDIL01 - 24Volt Digital Input		
IOTA Models	CC-TDIL01 CU-TDIL01	Non Redundant	6"
	CC-TDIL11 CU-TDIL11	Redundant	12"
Input Channels	32		
Galvanic Isolation (any input terminal voltage referenced to common)	1500 VAC RMS or	±1500 VDC	
Isolation Technique	Optical (in IOM)		
DI Power Voltage Range	18 to 30 VDC		
ON Sense Voltage/Current	13 VDC (min) or 3 mA (min)		
OFF Sense Voltage/Current	5 VDC (max) or 1.2 mA (max)		
Input Impedance	4.2 ΚΩ		
Absolute Delay Across Input Filter and Isolation	5 ms ± 20%		
Field Resistance for Guaranteed ON Condition	300 Ωmax @ 15 VDC		
Field Resistance for Guaranteed OFF Condition	30 KΩmin @ 30 V	DC	

Digital Input High Voltage (32pt):

Digital input sensing for 110 VAC, 220 VAC, 125VDC.

Parameter	Specification					
Input / Output Model	CC-PDIH01 – Digital Input High Voltage					
	CU-PDIH01 – Digital Input High Voltage			Δ		
			9"		1	9"
IOTA Models	CC-TDI110 CU- TDI110	Non Redundant	9	CC-TDI220	Non Redundant	9
		Redundant		CU-TDI220	Redundant	
	CC-TDI120 CU-	Redundant	12"	CC-TDI230	Redundant	12"
	TDI120			CU-TDI230		
Input Channels	32			32		
Galvanic Isolation	1500 VAC RMS or	±1500 VDC		1500 VAC RMS or ±1500 VDC		
Isolation Technique	Optical			Optical		
	120 VAC	125 VDC		240VAC		
Digital Input Pwr. Range	90-132 VAC RMS	100-138 VD	С	180-264 VAC RMS		
Sense Current (ON condition)	1.0 mA minimum	1.2 mA minir	num	1.11 mA minimum		
Sense Current (OFF condition)	0.32 mA maximum	0.32 mA maximum		0.32 mA maximum		
Pick Up Voltage	90 VAC RMS	100 VDC 180 VAC RMS minimum				
(ON condition)	minimum	minimum				
Drop Out Voltage	25 VAC RMS	25 VDC minimum 50 VA		50 VAC RMS	maximum	
(OFF condition)	maximum					
Absolute Delay Across Input Filter and Isolation (Bounceless Input to logic level change)	25 ms maximum	10 ms maximum 25 ms maximum		um		
Frequency Range	47-63 Hz	NA		47-63 Hz		

Digital Output Bussed 24 VDC (32 pt):

The Digital Output bussed 24VDC module provides reliable 24V digital output signals to control other processes. The DO24V can support high energy outputs to reduce the number of external components in the output loop.

Specification					
CC-PDOB01 – 24Volt Digital Output, Field Isolated, Bussed output					
CU-PDOB01 – 24Volt Dig	gital Output , Fiel	d Isolated	, Bussed o	utput	
CC-TDOB11			Non Red	lundant	6"
CU-TDOB11			Redunda	ant	12"
32					
30 VDC Maximum					
	Per Channel	Per 8 Channels Per Mod		dule	
One Short Condition ⁽¹⁾	0.5A	3A		6A	
Two Short Condition ⁽¹⁾	0.5A	1.5A		6A	
1500 VAC RMS or ±1500 VDC					
24 V (typ), load current @ 0.5A					
0v VDC (max) (3.3VDC (max) indicated under no-load condition)					
10 ms (max)					
10 ms maximum (applies	to Redundancy	only)			
	СС-PDOB01 – 24Volt Di CU-PDOB01 – 24Volt Di CC-TDOB11 CU-TDOB11 32 30 VDC Maximum One Short Condition ⁽¹⁾ Two Short Condition ⁽¹⁾ 1500 VAC RMS or ±1500 24 V (typ), load current (0v VDC (max) (3.3VDC (0.5 µA (max) 10 ms (max)	CC-PDOB01 – 24Volt Digital Output , Fiel CU-PDOB01 – 24Volt Digital Output , Fiel CC-TDOB11 CU-TDOB11 32 30 VDC Maximum Per Channel One Short Condition ⁽¹⁾ One Short Condition ⁽¹⁾ Two Short Condition ⁽¹⁾ 1500 VAC RMS or ±1500 VDC 24 V (typ), load current @ 0.5A Ov VDC (max) (3.3VDC (max) indicated u 0.5 µA (max) 10 ms (max)	CC-PDOB01 – 24Volt Digital Output , Field Isolated CC-PDOB01 – 24Volt Digital Output , Field Isolated CC-TDOB11 CC-TDOB11 Output , Field Isolated CC-TDOB11 Output , Field Isolated Output , Field Isolated Output , Field Isolated Output , Field Isolated OUTPOB11 32 30 VDC Maximum Per Channel Output , Field Isolated Output , Field Isolated OUTDOB11 32 30 VDC Maximum Output , Field Isolated Output , Salate	CC-PDOB01 – 24Volt Digital Output , Field Isolated, Bussed of CU-PDOB01 – 24Volt Digital Output , Field Isolated, Bussed of CC-TDOB11 Non Red CU-TDOB11 Redunda 32 30 VDC Maximum Per Channel Per 8 Channels One Short Condition ⁽¹⁾ 0.5A 3A Two Short Condition ⁽¹⁾ 0.5A 1.5A 1500 VAC RMS or ±1500 VDC 24 V (typ), load current @ 0.5A 0v VDC (max) (3.3VDC (max) indicated under no-load condition 0.5 µA (max) 10 ms (max)	CC-PDOB01 – 24Volt Digital Output , Field Isolated, Bussed output CC-PDOB01 – 24Volt Digital Output , Field Isolated, Bussed output CC-TDOB11 Non Redundant CC-TDOB11 Redundant Output , Field Isolated, Bussed output Output , Field Isola

One / Two Short Condition parameter denotes the maximum current that can be passed through the DO with the short condition indicated before the short protection mechanism disables the function. As an example, the DO can drive a maximum of 1.5A per 8 channels with two channels shorted before the short protection mechanism will disable all 8 channels affected.

Relay Digital Output (32 pt):

Digital output with NO or NC dry contacts. Can be used for low power or high power applications.

Parameter	Specification				
Input / Output Model	CC-PDOB01 – 24Volt, Field Isolated, Bussed output				
	CU-PDOB01 – 24Volt, Field Isolated, Bussed output				
IOTA Models	CC-TDOR01, CU-TDOR01	Non Redundant	6"		
	CC-TDOR11, CU-TDOR11	Redundant	12		
	CC-SDOR01, CU-SDOR01	Redundant	12		
Output Channels	32 isolated Form A (SPST/NO) or Form B (SPST/N selectable per output)	C) contacts (jumper			
Maximum Load Voltage	250 VAC (RMS)/125 VDC				
Maximum Steady State Load Current	Current \rightarrow Voltage				
per Output	$3 \text{ A} \rightarrow 250 \text{ VAC}$ (resistive)				
	$3 \text{ A} \rightarrow 125 \text{ VAC}$ (resistive)				
	$3 \text{ A} \rightarrow 30 \text{ VDC}$ (resistive)				
	$1 \text{ A} \rightarrow 48 \text{ VDC}$ (resistive)				
	$0.2 \text{ A} \rightarrow 125 \text{ VDC}$ (resistive)				
	$2 \text{ A} \rightarrow 250 \text{ VAC}$ (Inductive – 0.4 power factor)				
	$2 \text{ A} \rightarrow 125 \text{ VAC}$ (Inductive – 0.4 power factor)				
	$1 \text{ A} \rightarrow 30 \text{ VAC}$ (Inductive L/R = 100 ms)				
	$0.3 \text{ A} \rightarrow 48 \text{ VAC}$ (Inductive L/R = 100 ms)				
	$0.1 \text{ A} \rightarrow 125 \text{ VAC}$ (Inductive L/R = 100 ms)				
Minimum Load Voltage	5 VDC (1)				
Minimum Load Current	10 mA (1)				
Galvanic Isolation	1500 VAC RMS or ±1500 VDC				
Turn On Time	20 ms maximum				
Turn Off Time	20 ms maximum				
Contact Life	Operations \rightarrow % of Max. Load				
	$10,000,000 \rightarrow (Mechanical Life)$				
	200,000 @ 3 A (100%)				
	$120\Omega + 0.03^{\circ}$ F for each channel				

high voltage applications.

Temperature Multiplexer (64pt):

Provides thermocouple (TC) and resistance temperature device (RTD) inputs. The Multiplexer supports up to four, field proven PMIO FTAs.

Parameter		Specification		
Input / Output Model		CC PAIM01, CU PAIM01		
PMIO IOTA Models		CC-TAIM01, CU-TAIM01		
PMIO FTA Models (1)		CC-TAMR04, CU-TAMT04		
		CC-TAMR04, CU-TAMT04		
		MC-TAMR04, MC-TAMT04		
		MU-TAMR04, MU-TAMT04		
Input Type		Thermocouple and / or RTD		
Input channels		64 fully-isolated channel-to-channel, channel-to-PM, and channel-to-power supply common in 16 channel increments.		
Input scan rate		1 Second fixed by IOM (up to 64 channels/sec max.)		
Channel bandwidth		0 to 4.7 Hz (-3 dB)		
Nominal input range (TC only)		-20 to +100 millivolts		
Maximum normal mode continuous inp	out non-damaging (any	-10 to +10 volts (TC)		
thermocouple type configured)		-1 to +2 Volts @ 100 milliamps (RTD)		
Gain error (-20 to +100 millivolt range)		0.050% full scale max		
Temperature stability	TC Millivalt inputs	+/-20 ppm per deg C max		
	TC, Millivolt inputs RTD inputs			
Long term drift		+/-20 ppm per deg C max		
Input impedance		500 ppm		
CMV with respect to Power System co	mmon do to 60 Hz	1 megohm at dc (TC only)		
		+/-250 VDC or VAC RMS		
CMRR, 50 or 60 Hz (with 1000 ohms s	•	120 dB min		
Voltage, channel-to-channel, dc to 60 l	HZ	+/-250 VDC or VAC RMS		
Crosstalk, dc to 60 Hz		80 dB (120 dB at 50 and 60 Hz)		
NMRR at 50/ 60 Hz		60 dB min		
Line frequency integration		Fixed selection of 50 Hz or 60 Hz		
RTD sensor excitation current		1 milliamp		
Cold junction compensation range		-20 to +60 deg C (+/-0.5 deg C typical)		
TC Linearization Accuracy (2)		$\pm 0.05 \Omega / \text{deg C}$		
Open Thermocouple Detection RTD Max Lead Resistance		Each conversion qualified, $\leq 1000 \Omega$ = guaranteed no-trip $\geq 1500 \Omega$ guaranteed trip.		
Surge protection (sensor terminals)		15Ω		
- · · · · ·	achla adaptar aptica)	EN 61000-4-5 (for Industrial locations, 1kV line to line, 2kV line to gnd.)		
Surge protection (power/serial link with		EN 61000-4-5 (for Industrial locations, 1kV line to line, 2kV line to gnd.)		
Maximum cable distance IOTA to FTA using cable adapter		1000 feet 16 gauge wire, two twisted pair per FTA		
Supported types (RTD)		-180 to +800 deg C		
	Pt: 100 ohm DIN 4376	-		
	Pt: 100 ohm JIS C-1604			
	Ni: 120 ohm ED #7	-45 to +315 deg C		
A	Cu: 10 ohm SEER	-20 to +250 deg C		
Supported thermocouple types	ANSI aposition 1	-200 to +1200 deg C		
	ANSI specification J	-100 to +1370 deg C		
	ANSI specification K	-200 to +1000 deg C		
	ANSI specification E	-200 to +1000 deg C -230 to +400 deg C		
	ANSI specification T	<u> </u>		
ANSI specification B Page 7 of 9		+100 to +1820 deg C		

Parameter		Specification
	ANSI specification S	0 to +1700 deg C
	ANSI specification R	0 to +1700 deg C
	JAPAN TYPE R '	0 to +1770 deg C
Supported millivolt types		-20 to +100 millivolts
FTA dimensions (1)		2.5 D x 4.9 W x 12.1 L (inches)
		63.5 D x 124.46 W x 307.34 L (millimeters)
	configuration. Refer to PM2	els. These are similar to but not identical to Series 0-660 for FTA power, environmental and approval

(2): Linearization polynomials are 4th order and based on NIST Monograph 175, ITS90 and JIS C-1602-1995.

Fieldbus – 4 Nets:

Parameter	Specification		
Input / Output Model	CC-PFB401 – Fieldbus 4 – Nets		
	CU-PFB401 – Fieldbus 4 – Nets		
IOTA Models	CC-TFB402, CU-TFB402	Non Redundant	
	CC-TFB412, CU-TFB412	Redundant	
Load Voltage	24 VDC		
Load Current	0.196A	0.196A	
Other Technical Information		Ethernet: 2 RJ-45 Connections (Redundant version contains 4) FF Wiring: 24VDC (external) / 350 mA total	

Experion Series C System Components' List

Modules	Description
CU-CBDS01	Series C, Single Access Cabinet
CU-CBDD01	Series C, Dual Access Cabinet
CC-MCAR01	IOTA Carrier Channel Assembly
Ca-PCNT01	C300Controi Processor
Ca-TCNT01	C300Controi Processor IOTA
Ca-PAIH01	Hi-level AI HART
CA-TAIX01	Hi-level AI HART IOTA
Ca-TAIX11	Hi-level AI HART IOTA - Redundant
Ca-PAOH01	AO 16pt HART
Ca-TAOX01	AOIOTA
Ca-TAOX11	AO IOTA - Redundant
Ca-PDIL01	Dl24V
Ca-TDIL01	DI24VIOTA
Ca-TDIL11	DI 24V IOTA - Redundant
Ca-PDOB01	DO 24V Bussed Out
Ca-TDOB01	DO 24V Buss IOTA
Ca-TDOB11	DO 24V Buss IOTA - Redundant
Ca-TDOR01	DO Relay IOTA
Ca-TDOR11	DO Relay IOTA - Redundant
Ca-SDOR01	DO Relay Extension Board
Ca-PFB401	Fieldbus - 4 Nets
Ca-TFB402	Fieldbus IOTA - 4 Nets
Ca-TFB412	Fieldbus IOTA - Redundant - 4 Nets
Ca-PAIM01	PMIOLLMux
Ca-TAIM01	PMIO LLMux IOTA
Ca-TAMT04	LLMuxTCFTA
Ca-TAMR01	LLMux RTD FTA
Ca-PCF901	Control Firewall (8 port + 1 uplink)
Ca-TCF901	Control Firewall IOTA
Ca-FSMx01	FTE Single Model Fiber Module
Ca-FMMx01	FTE Multi-Model Fiber Module
Ca-PDIH01	Digital Input High Voltage
Ca-TDI110	DI 110 Vac IOTA
Ca-TDI120	DIII0 Vac IOTA - Redundant
Ca-TD1220	DI 220 Vac IOTA
Ca-TDI230	DI 220 Vac IOTA - Redundant
Ma-TAMT04	Low Level Multiplexer Thermocouple Field Termination Assembly
Ma-TAMR04	Low Level Multiplexer RTD Field Termination Assembly
	· · · · · · · · · · · · · · · · · · ·

-----END------